深入学习block

  • clang工具
  • block分类
  • block 结构
  • block调用
  • block类型以及ARC对block的影响
  • 外部变量对block的影响

参考文章:
Block技巧与底层解析
Block底层实现分析
iOS Block底层探索
Block-ABI-Apple


clang工具

clang结构化编译器前端,简单理解为可以编译llvm架构的代码工具

Clang 对源程序进行词法分析和语义分析,并将分析结果转换为 Abstract Syntax Tree ( 抽象语法树 ) ,最后使用 LLVM 作为后端代码的生成器。

使用方法:
clang -rewrite-objc 文件名

新建一个工程,执行clang -rewrite-objc main.c会生成一个main.cpp文件


block 结构

先看一个简单的block:

1
2
3
4
5
int main(int argc, const char * argv[]) {
^{
printf("hello world");
}();
}

clang 之后看一下main.cpp, 把多余代码删掉主要看以下代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
//定义__main_block_desc_0结构体时,同时创建了__main_block_desc_0_DATA 并给它赋值,以供在main函数中对__main_block_impl_0进行初始化
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
//对应源代码中block内部代码
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
printf("hello world");
}
//对应源代码的main函数
int main(int argc, const char * argv[]) {
((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA))();
return 0;
}

通过对比可以看到,block对应struct __main_block_impl_0 这个结构体,意思就是main函数中第0block实现,这个结构体包含

  • struct __block_impl impl
    • void *isa
      • 指向对应类型的指针
    • int Flags
      • 标志变量,在实现block的内部操作时会用到
    • int Reserved
      • 保留字段
    • void *FuncPtr
      • block执行时调用的函数的指针
  • struct __main_block_desc_0
    • size_t reserved
      • 保留字段
    • size_t Block_size
      • block大小
  • __main_block_impl_0
    • 显式的构造函数

这里有一个纠结的地方block到底是__main_block_impl_0 还是__block_impl,目前理解为__block_impl为系统定义block的实现,__main_block_impl_0是实际block实现,相当于在block本质实现的基础上新增了特性。

对比官方定义的block

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/* Revised new layout. */
struct Block_descriptor {
unsigned long int reserved;
unsigned long int size;
void (*copy)(void *dst, void *src);
void (*dispose)(void *);
};
struct Block_layout {
void *isa;
int flags;
int reserved;
void (*invoke)(void *, ...);
struct Block_descriptor *descriptor;
/* Imported variables. */
};

其中invokeFuncPtr是一样的只是clang生成的变量名不同,copydispose时捕获外部变量时使用,在下面会讨论。

所以得出一个结论block是一个包含调用函数指针block外部上下文变量的结构体,其次内部包含isa指针,说明block也是一个对象


block调用

创建简单block

1
2
3
4
void(^testblock)() =^{
printf("hello world");
};
testblock();

执行clang,其他生成代码都和上面基本一致主要看main函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
struct __main_block_impl_2 {
struct __block_impl impl;
struct __main_block_desc_2* Desc;
__main_block_impl_2(void *fp, struct __main_block_desc_2 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
void(*testblock)() =((void (*)())&__main_block_impl_2((void *)__main_block_func_2, &__main_block_desc_2_DATA));
((void (*)(__block_impl *))((__block_impl *)testblock)->FuncPtr)((__block_impl *)testblock);

  1. 调用__main_block_impl_2显式构造函数
  2. &将1结果地址赋值给testblock
  3. testblock强转成__block_impl调用FuncPtr也就是__main_block_func_2

这里有一个问题,理论上testblock的类型是__main_block_impl_2为什么可以强转成__block_impl?

这是因为&取得是起始地址,结构体的起始地址和他第一个元素的起始地址是一致的也就是说&__main_block_impl_2&(__main_block_impl_2->__block_impl)地址是一样的,所以这里可以强制转化


block类型以及ARCblock的影响

block的常见类型有3种:

  • NSConcreteStackBlock(栈)
  • NSConcreteGlobalBlock(全局)
  • NSConcreteMallocBlock(堆)

我们先简单创建两个block

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#import "TestBlock.h"
void (^globalBlock)(void) = ^{
};
@implementation TestBlock
- (void)testStackBlock{
void(^stackBlock)(void) = ^{
NSLog(@"stackBlock");
};
stackBlock();
}
@end

对其进行编译转换后得到以下缩略代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
...
struct __globalBlock_block_impl_0 {
struct __block_impl impl;
struct __globalBlock_block_desc_0* Desc;
__globalBlock_block_impl_0(void *fp, struct __globalBlock_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteGlobalBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
...
struct __TestBlock__testStackBlock_block_impl_0 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_0* Desc;
__TestBlock__testStackBlock_block_impl_0(void *fp, struct __TestBlock__testStackBlock_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
...

观察一下上面简单block发现impl.isa便是对应的block类型;可以看到globalBlock属于NSConcreteGlobalBlockstackBlock属于NSConcreteStackBlock
然而我们实际输出:

stackblock也属于globalBlockwhy???
参照唐巧博客解释

由于 clang 改写的具体实现方式和 LLVM 不太一样,并且这里没有开启 ARC。所以这里我们看到 isa 指向的还是_NSConcreteStackBlock。但在 LLVM 的实现中,开启 ARC 时,block 应该是 _NSConcreteGlobalBlock 类型

详细的LLVM解析看llvm对于Block的编译规则(我没全部看完😅)。

可以理解为由于block中的代码没有捕获任何外部变量,这个block不存在任何内存泄漏的风险,也不需要引用计数,所以类型为__NSGlobalBlock__

所以如果block内部引用了外部变量就不会变成__NSGlobalBlock__,新增以下代码:

1
2
3
4
5
6
7
8
9
10
- (void)testStackBlock {
...
int a = 0;
void(^blockWithVar)(void) = ^{
NSLog(@"%d", a);
};
blockWithVar();
...
}

clang 之后:

1
2
3
4
5
6
7
8
9
10
11
struct __TestBlock__testStackBlock_block_impl_2 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_2* Desc;
int a;
__TestBlock__testStackBlock_block_impl_2(void *fp, struct __TestBlock__testStackBlock_block_desc_2 *desc, int _a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};

发现impl.isa指向NSConcreteStackBlock,然而我们输出发现:

创建block时是在__NSStackBlock__,而赋值给blockWithVar后,blockWithVar属于__NSMallocBlock__,这是因为ARC环境下

在 ARC 下,block 类型通过=进行传递时,会导致调用objc_retainBlock->_Block_copy->_Block_copy_internal方法链。并导致 NSStackBlock 类型的 block 转换为 NSMallocBlock 类型。
原文地址:https://www.jianshu.com/p/0855b68d1c1d

NSObject.mm源代码可以看到

1
2
3
4
5
6
7
8
9
10
11
//
// The -fobjc-arc flag causes the compiler to issue calls to objc_{retain/release/autorelease/retain_block}
//
id objc_retainBlock(id x) {
#if ARR_LOGGING
objc_arr_log("objc_retain_block", x);
++CompilerGenerated.blockCopies;
#endif
return (id)_Block_copy(x);
}

_Block_copy是在runtime.c中实现的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
void *_Block_copy(const void *arg) {
return _Block_copy_internal(arg, WANTS_ONE);
}
...
#if 0
#pragma mark Copy/Release support
#endif /* if 0 */
/* Copy, or bump refcount, of a block. If really copying, call the copy helper if present. */
static void *_Block_copy_internal(const void *arg, const int flags) {
struct Block_layout *aBlock;
const bool wantsOne = (WANTS_ONE & flags) == WANTS_ONE;
//printf("_Block_copy_internal(%p, %x)\n", arg, flags);
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
// 堆block引用计数加1
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
else if (aBlock->flags & BLOCK_IS_GC) {
// GC refcounting is expensive so do most refcounting here.
if (wantsOne && ((latching_incr_int(&aBlock->flags) & BLOCK_REFCOUNT_MASK) == 1)) {
// Tell collector to hang on this - it will bump the GC refcount version
_Block_setHasRefcount(aBlock, true);
}
return aBlock;
}
//全局类型直接返回
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
------------------------------------------------------------
// Its a stack block. Make a copy.
------------------------------------------------------------
if (!isGC) {
struct Block_layout *result = malloc(aBlock->descriptor->size);
if (!result) return (void *)0;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK); // XXX not needed
// 添加需要释放的flag
result->flags |= BLOCK_NEEDS_FREE | 1;
result->isa = _NSConcreteMallocBlock;
if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
//printf("calling block copy helper %p(%p, %p)...\n", aBlock->descriptor->copy, result, aBlock);
(*aBlock->descriptor->copy)(result, aBlock); // do fixup
}
return result;
}
else {
...
}
}

关闭ARC测试下:

此时输出blockWithVar是属于__NSStackBlock__

我们打开ARC继续看,ARC环境下所有的block赋值给变量都会copy到堆上吗?

发现使用__weak修饰时并不会复制到堆上。所以如果使用要注意!!!

ARC对类型为strong且捕获了外部变量的block进行了copy。并且当block类型为strong,但是创建时没有捕获外部变量,block最终会变成NSGlobalBlock类型

外部变量对block的影响

捕捉局部变量的影响

首先看下面的代码

1
2
3
4
5
6
7
8
9
int a = 1;
void(^blockWithVar)(void) = ^{
NSLog(@"%d", a);
};
void(^blockWithNonVar)(void) = ^{
NSLog(@"test");
};

转化后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
struct __TestBlock__testStackBlock_block_impl_0 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_0* Desc;
int a;
__TestBlock__testStackBlock_block_impl_0(void *fp, struct __TestBlock__testStackBlock_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
int a = __cself->a; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_91f955_mi_0, a);
}
...
struct __TestBlock__testStackBlock_block_impl_1 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_1* Desc;
__TestBlock__testStackBlock_block_impl_1(void *fp, struct __TestBlock__testStackBlock_block_desc_1 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __TestBlock__testStackBlock_block_func_1(struct __TestBlock__testStackBlock_block_impl_1 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_91f955_mi_1);
}
...
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
int a = 1;
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA, a));
void(*blockWithNonVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_1((void *)__TestBlock__testStackBlock_block_func_1, &__TestBlock__testStackBlock_block_desc_1_DATA));
}

对比发现blockWithVar在转化后多了一个int a的变量,同时在显式构造函数里多了int _a,后面的: a(_a)相当于a = _a,是c++中的初始化列表。通过

1
2
3
4
5
6
7
8
9
10
11
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
int a = 1;
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA, a));
}
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
int a = __cself->a; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_91f955_mi_0, a);
}

发现a传递到block中是值传递,在调用里会生成另外一个a(int a = __cself->a;) 所以我们在block中更改a的值是不会生效的。同时编译器也会报错

看报错提示加上__block,那我们加上__block看会有什么影响:

1
2
3
4
5
6
7
8
9
10
11
12
- (void)testStackBlock{
__block int a = 1;
void(^blockWithVar)(void) = ^{
NSLog(@"pre => %d", a);
a = 3;
};
blockWithVar();
NSLog(@"res => %d", a);
void(^blockWithNonVar)(void) = ^{
NSLog(@"test");
};
}

转化后关键代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
};
struct __TestBlock__testStackBlock_block_impl_0 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_0* Desc;
__Block_byref_a_0 *a; // by ref
__TestBlock__testStackBlock_block_impl_0(void *fp, struct __TestBlock__testStackBlock_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_63aeec_mi_0, (a->__forwarding->a));
(a->__forwarding->a) = 3;
}
// 辅助copy函数,下面会用到
static void __TestBlock__testStackBlock_block_copy_0(struct __TestBlock__testStackBlock_block_impl_0*dst, struct __TestBlock__testStackBlock_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
// 辅助dispose函数,下面会用到
static void __TestBlock__testStackBlock_block_dispose_0(struct __TestBlock__testStackBlock_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __TestBlock__testStackBlock_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestBlock__testStackBlock_block_impl_0*, struct __TestBlock__testStackBlock_block_impl_0*);
void (*dispose)(struct __TestBlock__testStackBlock_block_impl_0*);
} __TestBlock__testStackBlock_block_desc_0_DATA = { 0, sizeof(struct __TestBlock__testStackBlock_block_impl_0), __TestBlock__testStackBlock_block_copy_0, __TestBlock__testStackBlock_block_dispose_0};
// 对应的是testStackBlock
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
__attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0), 1};
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
}

  1. 先看最后的_I_TestBlock_testStackBlock,发现加上__block关键字之后a已经不是int类型而是对应__Block_byref_a_0类型
  2. 再观察__Block_byref_a_0包含:
    • void *__isa 说明是一个对象
    • __Block_byref_a_0 *__forwarding;
    • int __flags;
    • int __size;
    • int a;这里面的a对应的就是block外面赋的值
  3. 继续观察(__Block_byref_a_0 *)&a,在block编译时将(__Block_byref_a_0 *)&a传给了block,所以不再是值传递而是内存地址传递,所以在block内可以操纵a

那么如果直接传递内存地址而不使用__block可以吗?
将代码修改如下

1
2
3
4
5
6
7
8
9
10
- (void)testStackBlock{
int a = 1;
int *p = &a;
void(^blockWithVar)(void) = ^{
NSLog(@"pre => %d", *p);
*p = 3;
};
blockWithVar();
NSLog(@"res => %d", *p);
}

运行发现可以修改,但这样很明显可以看出来如果a释放了,p就变成了野指针,如果block是作为参数或者返回值,这些类型都是跨栈的,也就是说再次调用会造成野指针错误。例如下面的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
- (void)testStackBlock{
int a = 1;
int *p = &a;
void(^blockWithVar)(void) = ^{
NSLog(@"pre => %d", *p);
*p = 3;
};
// blockWithVar();
NSLog(@"res => %d", *p);
[self.blockArray addObject:blockWithVar];
}
- (void)testBlock:(void(^)(void))block {
block();
}

捕捉局部静态变量的影响

1
2
3
4
5
6
7
8
9
- (void)testStackBlock{
static int a = 1;
void(^blockWithVar)(void) = ^{
a = 3;
};
NSLog(@"pre a => %d", a);
blockWithVar();
NSLog(@"res a => %d", a);
}

转化后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
struct __TestBlock__testStackBlock_block_impl_0 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_0* Desc;
int *a;
__TestBlock__testStackBlock_block_impl_0(void *fp, struct __TestBlock__testStackBlock_block_desc_0 *desc, int *_a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
int *a = __cself->a; // bound by copy
//地址访问
(*a) = 3;
}
static struct __TestBlock__testStackBlock_block_desc_0 {
size_t reserved;
size_t Block_size;
} __TestBlock__testStackBlock_block_desc_0_DATA = { 0, sizeof(struct __TestBlock__testStackBlock_block_impl_0)};
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
static int a = 1;
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA, &a));
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_188fa3_mi_0, a);
((void (*)(__block_impl *))((__block_impl *)blockWithVar)->FuncPtr)((__block_impl *)blockWithVar);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_188fa3_mi_1, a);
}

可以看到此时a是地址传递,在block内部也可以成功更改a的值,

需要注意一点的是静态局部变量是存储在静态数据存储区域的,也就是和程序拥有一样的生命周期,也就是说在程序运行时,都能够保证block访问到一个有效的变量。但是其作用范围还是局限于定义它的函数中,所以只能在block通过静态局部变量的地址来进行访问。

捕捉全局变量的影响

1
2
3
4
5
6
7
8
9
10
11
12
13
int b = 3;
static int c = 4;
- (void)testStackBlock{
void(^blockWithVar)(void) = ^{
b = 5;
c = 6;
};
NSLog(@"pre b => %d", b);
NSLog(@"pre c => %d", c);
blockWithVar();
NSLog(@"pre b => %d", b);
NSLog(@"pre c => %d", c);
}

转化后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int b = 3;
static int c = 4;
...
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
b = 5;
c = 6;
}
...
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA));
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_d646c1_mi_0, b);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_d646c1_mi_1, c);
((void (*)(__block_impl *))((__block_impl *)blockWithVar)->FuncPtr)((__block_impl *)blockWithVar);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_d646c1_mi_2, b);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_d646c1_mi_3, c);
}

可以看到全局变量都是直接访问变量的,是因为全局变量存储在静态数据存储区,在程序结束前不会被销毁

实例变量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
@interface TestBlock ()
{
NSString *_str;
int _a;
}
@end
- (void)testStackBlock{
void(^blockWithVar)(void) = ^{
_a = 5;
_str = @"test";
};
NSLog(@"res a => %d", _a);
NSLog(@"res str => %@", _str);
blockWithVar();
NSLog(@"res a => %d", _a);
NSLog(@"res str => %@", _str);
}

这里编译器会给我们警告,意思就是有隐式的self引用,我们转化一下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
struct __TestBlock__testStackBlock_block_impl_0 {
struct __block_impl impl;
struct __TestBlock__testStackBlock_block_desc_0* Desc;
TestBlock *self;//TestBlock 类
__TestBlock__testStackBlock_block_impl_0(void *fp, struct __TestBlock__testStackBlock_block_desc_0 *desc, TestBlock *_self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __TestBlock__testStackBlock_block_func_0(struct __TestBlock__testStackBlock_block_impl_0 *__cself) {
TestBlock *self = __cself->self; // bound by copy
// self+实例变量a的偏移值
(*(int *)((char *)self + OBJC_IVAR_$_TestBlock$_a)) = 5;
(*(NSString **)((char *)self + OBJC_IVAR_$_TestBlock$_str)) = (NSString *)&__NSConstantStringImpl__var_folders_11__5wr7xmx2d944s1pgmnw7mn80000gn_T_TestBlock_0453bc_mi_0;
}
static void __TestBlock__testStackBlock_block_copy_0(struct __TestBlock__testStackBlock_block_impl_0*dst, struct __TestBlock__testStackBlock_block_impl_0*src) {_Block_object_assign((void*)&dst->self, (void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __TestBlock__testStackBlock_block_dispose_0(struct __TestBlock__testStackBlock_block_impl_0*src) {_Block_object_dispose((void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __TestBlock__testStackBlock_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestBlock__testStackBlock_block_impl_0*, struct __TestBlock__testStackBlock_block_impl_0*);
void (*dispose)(struct __TestBlock__testStackBlock_block_impl_0*);
} __TestBlock__testStackBlock_block_desc_0_DATA = { 0, sizeof(struct __TestBlock__testStackBlock_block_impl_0), __TestBlock__testStackBlock_block_copy_0, __TestBlock__testStackBlock_block_dispose_0};
static void _I_TestBlock_testStackBlock(TestBlock * self, SEL _cmd) {
//self 传进去
void(*blockWithVar)(void) = ((void (*)())&__TestBlock__testStackBlock_block_impl_0((void *)__TestBlock__testStackBlock_block_func_0, &__TestBlock__testStackBlock_block_desc_0_DATA, self, 570425344));
...
}

通过上面看到block内部会生成一个TestBlock *self,它的值便是_I_TestBlock_testStackBlock中的self所以可以更改实例变量,当然这里会有一个循环引用的问题,也就是说block引用实例变量也会强引用self


总结:

  • block本质上是一个包含调用函数指针、block外部上下文变量的结构体
  • block有根据存储位置不同分为三种类型
    • NSConcreteStackBlock(栈)NSConcreteGlobalBlock(全局)NSConcreteMallocBlock(堆)
  • ARC模式下会把不引用外部变量的block转化成NSConcreteGlobalBlock,引用外部变量的block会在赋值时转化为NSConcreteMallocBlock
  • block引用外部局部变量和静态局部变量或实例变量时会在block内部生成对应的变量。在引用全局变量时并不会生成对应变量。
  • Block会对内部的变量形成强引用,而如果同时该变量又持有这个Block,就会导致循环引用而无法释放,从而导致内存泄露。注意隐式的循环引用